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ABSTRACT
Saliency detection methods are central to several real-world appli-
cations such as robot navigation and satellite imagery. However,
the performance of existing methods deteriorate under low-light
conditions because training datasets mostly comprise of well-lit
images. One possible solution is to collect a new dataset for low-
light conditions. This involves pixel-level annotations, which is
not only tedious and time-consuming but also infeasible if a huge
training corpus is required. We propose a technique that performs
classical band-pass filtering in the Fourier space to transform well-
lit images to low-light images and use them as a proxy for real
low-light images. Unlike popular deep learning approaches which
require learning thousands of parameters and enormous amounts
of training data, the proposed transformation is fast and simple and
easy to extend to other tasks such as low-light depth estimation.

Our experiments show that the state-of-the-art saliency detec-
tion and depth estimation networks trained on our proxy low-light
images perform significantly better on real low-light images than
networks trained using existing strategies.

CCS CONCEPTS
• Computing methodologies→ Interest point and salient re-
gion detections; Interest point and salient region detections.
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1 INTRODUCTION
Saliency detection models aim to identify prominent subjects in a
scene, which is useful in several tasks such as robot navigation [21,
37], satellite imagery [15, 47], video summarization [18], foreground
annotation [5], and action recognition [39, 40]. In a real-world
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Figure 1: Saliency and depth estimation networks perform
poorly for low-light images, see (d) & (j), because datasets
mainly comprise of well-lit images. We propose a simple
transformation from well-lit to low-light images. Training
existing models on our proxy low-light images significantly
boosts the model’s performance on real low-light images,
see (f) & (l).

scenario, these applications require the saliency detection model
to perform well in both good and bad lighting conditions. But,
past studies in this domain [10, 24, 36] have focused mainly on
good lighting conditions with their effectiveness deteriorating for
low-light images, as shown in Fig. 1.

An obvious solution is to pre-process low-light images using
existing restoration methods [13, 19, 41] and then feed them to
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Figure 2: Block diagram of the proposed method.

saliency detection models trained for well-lit images. But our ex-
periments indicate that this does not yield satisfactory results, see
Fig. 3. Another alternative is to create a new dataset for low-light
conditions. This can be done by manually annotating salient ob-
jects in existing low-light datasets [4, 6] or by retouching well-lit
saliency detection datasets [34] in image editing softwares like
Adobe Lightroom and GIMP [38, 42]. Either-way, this could be la-
borious, time-consuming, and perhaps even infeasible when a large
amount of training data is required.

To alleviate the above challenges, several image translation [2,
33, 35] and domain adaptation [22, 46] methods have been proposed.
For example, HiDT [2] adopts an encoder-decoder architecture to
decompose a well-lit image into its style and content and conse-
quently uses adversarial learning to transform well-lit images into
low-light images. Nonetheless, such GAN-based solutions are diffi-
cult to train and susceptible to problems such as mode collapse [12].
Recently, Yang et al. [46] proposed a simple domain adaptation
technique, called Fourier Domain Adaptation (FDA), wherein they
swap the low frequencies of the source and target domain images.
In the present context, source domain represents well-lit images
while target domain represents low-light images. However, FDA is
likely to introduce ringing artifacts in the transformed image due
to the Gibbs phenomenon [31], leading to sub-optimal results, as
discussed in Sec. 4.6.

To alleviate above problems, we propose a transformation that
fuses the amplitude spectrum of a well-lit image with that of a
low-light image using band-pass filtering, as shown in Fig. 2. We
keep the phase spectrum as it is, because it contains structural in-
formation about the source image [32]. During band-pass filtering
of the amplitude spectrum, we also perform a windowing operation
to facilitate smooth transition of frequencies and to curb ringing
artifacts. The proxy low-light image is finally obtained by comput-
ing the inverse Fourier transform of the fused amplitude response
and the phase spectrum of the well-lit image. These transformed
well-lit images into proxy images are then used to train existing

networks for real low-light conditions. Our proposed approach is
computationally and memory efficient as it requires tuning a cou-
ple of hyper-parameter and needs only 3 − 4 real low-light images
for the transformation of well-lit images into proxy images. This
is in contrast with popular deep-learning-based models which re-
quire training hundreds of parameters and a lot of images. For the
aforementioned reason, our proposed transformation can be easily
generalised to other computer vision tasks in low-light conditions.
We show that networks trained using our proxy images perform sig-
nificantly better on real low-light images for downstream computer
vision tasks such as saliency prediction and depth estimation.

Our contributions can be summarised as below:
• We propose a technique for transforming well-lit images
into proxy low-light images, which can then be used to train
existing networks for real low-light conditions.
• Unlike popular deep-learning-based solutions, our approach
requires tuning only a couple of hyper-parameters and a
handful of real low-light images. Thus, the proposed trans-
formation can be easily generalized to other computer vision
tasks.
• We demonstrate both qualitatively and quantitatively that
the state-of-the-art saliency detection and depth estimation
networks trained on our proxy low-light images perform
significantly better on real low-light images.

2 RELATEDWORKS
Saliency prediction models can be classified as bottom-up and top-
down models. Bottom up saliency models use low-level features
and are stimuli driven as discussed in [17]. Work by Goferman et
al. [11] detects saliency by computing the local and global contrast.
Kim et al. [20] in their work used a regression based model and
color transform to calculate local and global saliency. These bottom
up saliency networks often fail in detecting salient objects when
the background is cluttered and in low contrast regions.
Whereas, top-down models use high level features to detect salient
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objects. Xu et al. [43] in their work predict saliency maps using a
support vector machine (SVM) model. A covariance based CNN
model was used by Mu et al. [28] to learn saliency values in image
patches. Dong et al. [7] used feature fusion and feature aggregation
in their bidirectional collaboration network (BCNet) for detecting
salient objects. It is observed that top down saliency networks de-
mand high computational requirements, yet they fail to predict
accurate boundaries of salient objects in low-light conditions. Thus,
we see that low-light saliency detection is a largely unexplored prob-
lem. We propose a method to address this problem by generating
proxy low-light images from well-lit images.

Past works have also explored image translation methods to
solve similar problems but not saliency detection in low light con-
ditions. We give a brief overview of them. Park et al. [33], used
unpaired image-to-image translation using contrastive learning for
domain adaptation. Anokhin et al. [2], used the style and content
representation of an image to translate into desired domain. Long
et al. [26] used per-pixel regression for classification to solve image-
to-image translation. Li et al. [23] used PatchGAN architecture to
locate style statistics. Isola et al. [16] used Pix2pix to map functions
between input and output images. However, most of these methods
use deep networks which are data hungry and need a lot of training
time. Recently, Yang et al. [46] proposed Fourier domain adaptation
(FDA) which overcomes these limitations as they do not need a
large training corpus.

3 SPECTRUM INSPIRED LOW-LIGHT IMAGE
TRANSLATION

3.1 Method Overview
We propose a method to convert well-lit images into proxy images.
Our main objective is to reduce the domain gap for downstream
computer vision applications by fusing the statistics of low-light
and well-lit images. This enables networks to perform downstream
vision tasks in low-light conditions even in the absence of real
low-light datasets. We do not place much emphasis on making the
proxy images look visually indistinct from real low-light images.

Our method takes inspiration from the fact that in the Fourier
representation of an image, it is the phase that carries most relevant
information needed to restore the image, and changes made to the
amplitude spectrum do not alter higher-level semantics. We thus re-
tain the phase spectrum of the well-lit image as it is. The amplitude
spectrum of the well-lit image, on the other hand, is fused with the
amplitude spectrum of a real low-light image using weighted aver-
aging. Further, to preserve the colors we use band-pass filtering and
adopt 2D windowing for suppressing the ringing artifacts. Using
our method mitigates the problem of building a large real low-light
dataset which may be time consuming and laborious. Since, our
method mainly involves modification of the spectral characteristics
of images, the computation efficiency depends mainly on that of
the FFT algorithm. This makes it very fast compared to training
neural networks for image translation and has a very low memory
footprint (See Sec. 4.3).

Algorithm 1 Proxy Dataset Generation
Input: Dwell: dataset of well-lit images; Dlow: pool of real
low-light images.
Hyperparameters: 𝜆𝑙 , 𝜆𝑢 , 𝛾 .
Remarks: Dlow can have unpaired images with respect to Dwell
and should have at least 1 real low-light image, i.e. |Dlow | ≥ 1.
Output: Dprx: dataset of proxy images.
1: Dprx = {}
2: for 𝐼well in Dwell do
3: if |Dlow | > 1 then
4: Sample a real low-light image, i.e. 𝐼low ∼ Dlow
5: else
6: 𝐼low = Dlow
7: end if
8: 𝐼low = resize(𝐼low, size = dim(𝐼well))
9: 𝐴well, ∡well = DFT(𝐼well)
10: 𝐴low, ∡low = DFT(𝐼low)
11: Define R = R𝑢 − R𝑙 where R𝑢 ,R𝑙 are given by Eq. 5
12: Compute mask 𝛼𝐵 as defined in Eq. 3
13: 𝐴fused = 𝛼𝐵 · 𝐴low + (1 − 𝛼𝐵) · 𝐴well

14: 𝐼prx =
[
𝐼𝐷𝐹𝑇 (𝐴fused, ∡well)

]𝛾
15: Append 𝐼prx to Dprx
16: end for
17: return Dprx

3.2 Low-light and well-lit fusion
Fig. 2 shows the various steps involved in our transformation
pipeline. Given any real well-lit image 𝐼well ∈ R𝐻×𝑊 ×3, we ran-
domly choose a real low-light image 𝐼low from a pool of real low-
light images and resize it to 𝐼well’s resolution. We next decompose
the images into their respective amplitude and phase spectrums
using the 2D Fourier Transform F as

𝐴well, ∡well = F (𝐼well) and 𝐴low, ∡low = F (𝐼low). (1)

The image semantics are better preserved in the phase response
[32] and sowe do notmodify ∡well.We however, compute aweighted
average of 𝐴well and 𝐴low to obtain the fused amplitude spectrum
𝐴fused. For the fusion, more weightage is given to 𝐴well for high
frequencies and to 𝐴low for low frequencies (See Eq. 2). We do this
to ensure that the proxy image 𝐼prx has the semantics of 𝐼well and
the style of 𝐼low [30].

𝐴fused
𝑚,𝑛 = 𝛼𝑚,𝑛 · 𝐴low

𝑚,𝑛 + (1 − 𝛼𝑚,𝑛) · 𝐴well
𝑚,𝑛 (2)

During fusion it is also necessary to ensure a smooth transition
of frequencies, otherwise the proxy image 𝐼prx will have significant
ringing artifacts due to Gibbs effect [31]. Our fusion weights 𝛼𝑚,𝑛

are inspired from the classical Blackman windowing [31]. We em-
pirically found that it is also necessary to retain the DC frequencies
of 𝐼well, otherwise the overall contrast of 𝐼prx is destroyed (see Fig.
6). We therefore compute fusion over a band of frequencies and not
over the entire spectrum. Formally, 𝛼𝑚,𝑛 is computed as

𝛼𝑚,𝑛 =

{
𝑤𝑚,𝑛 ∀𝑚,𝑛 ∈ R𝑢 − R𝑙
0 otherwise.

(3)
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Real Real a) Tr: Well-lit b)Tr:CUT c) Tr:HiDT d)Tr:CoMoGAN e) Tr: FDA f) Tr: Ours g) Tr: Well-lit

well-lit image low-light image Te:EnLow Te:Low-light Te:Low-light Te:Low-light Te:Low-light Te:Low-light Te:Well-lit

Figure 3: [Tr: Training; Te: Testing; EnLow: Enhanced low-light using Zero-DCE [13]] Saliency Detection by CSNet [10] and
BASNet [36] on real low-light images from the SICE dataset [4]. (a): Enhancing low-light images barely improves the perfor-
mance of the networks trained for well-lit images. (b), (c), (d), (e): Marginal improvements are observed when the networks
are trained on images simulated using CUT [33], HiDT [2], CoMoGAN [35] and FDA [46]. (f): Training models on our proxy
low-light images significantly improves saliency detection on real low-light images and the predictions are close to (g).
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Table 1: Quantitative results for saliency detection averaged over SICE’s [4] real low-light images. The best result is in bold
and second best is underlined. Our proposed strategy significantly outperforms existing methods.

CUT

[33]

HiDT

[2]

CoMoGAN

[35]

Zero-DCE

[13]

FDA

[46]
Ours

BASNet [36]

E-measure↑ 0.391 0.453 0.423 0.512 0.599 0.602

S-measure↑ 0.323 0.344 0.401 0.382 0.568 0.831

F-measure↑ 0.596 0.609 0.731 0.712 0.874 0.921

MAE↓ 0.462 0.311 0.243 0.296 0.168 0.092

CSNet [10]

E-measure↑ 0.498 0.518 0.621 0.611 0.587 0.675

S-measure↑ 0.388 0.417 0.532 0.503 0.631 0.801

F-measure↑ 0.621 0.693 0.756 0.732 0.755 0.923

MAE↓ 0.321 0.249 0.221 0.256 0.201 0.105

where,

𝑤𝑚,𝑛 =

[
0.42 + 0.5 cos

(
2𝜋𝑚
𝜆𝑢 ·𝐻

)
+ 0.08 cos

(
4𝜋𝑚
𝜆𝑢 ·𝐻

)]
×
[
0.42 + 0.5 cos

(
2𝜋𝑛
𝜆𝑢 ·𝑊

)
+ 0.08 cos

(
4𝜋𝑛
𝜆𝑢 ·𝑊

)]
(4)

R𝑙 ←𝑚 ∈ [−𝜆𝑙 𝐻2 , 𝜆𝑙
𝐻
2 ], and 𝑛 ∈ [−𝜆𝑙

𝑊
2 , 𝜆𝑙

𝑊
2 ]

R𝑢 ←𝑚 ∈ [−𝜆𝑢 𝐻
2 , 𝜆𝑢

𝐻
2 ], and 𝑛 ∈ [−𝜆𝑢

𝑊
2 , 𝜆𝑢

𝑊
2 ]

0 ≤ 𝜆𝑙 < 𝜆𝑢 < 1 (5)

Finally, 𝐼prx is obtained using the inverse Fourier transform as
shown in Eq. 6. 𝛾 > 1 controls the overall brightness of 𝐼prx. In-
creasing the value of 𝛾 yields a darker proxy low-light image 𝐼prx.

𝐼prx =

[
F −1 (𝐴fused, ∡well)

]𝛾
(6)

Empirically, we observed that visual artifacts begin to appear as
we increase the value of 𝜆𝑙 and 𝜆𝑢 . Therefore, for our simulation, we
used 𝜆𝑙 = 0.01 and 𝜆𝑢 = 0.1 (See Sec. 4.6). Our proposed method can
be iteratively applied to all well-lit images belonging to a dataset. For
this, only few real low-light images are required for transformation.
The details for transforming such well-lit datasets are given in
algorithm 1. Also for this algorithm to work, we do not require
a paired set of well-lit and low-lit images, and they can belong
to cameras of different make and model or even depict different
scenes.

4 EXPERIMENTS
4.1 Experimental Settings
To evaluate the proposed technique for salient object detection we
use the NLPR [34], LIME [14], and SICE [4] datasets. The NLPR
dataset contains 1000 well-lit images of size 640 × 480 with cor-
responding GT annotations for salient objects. LIME has 10 real

Table 2: Comparison of the training time and number of pa-
rameters used by various methods to translate well lit im-
ages into proxy low-light images. Compared to other meth-
ods which have millions of parameters, FDA and our strat-
egy contain only a couple of hyper-parameters. Thus FDA
and our method do not require several hours of training
time.

CUT HiDTCoMoGAN FDAOurs

Parameters 18.7M 9.8M 56.8M 1 2

Train Time (in hrs) 24 24 48 N/A N/A

low-light images from which we used 5 images to translate well-lit
images into low-light images. The SICE dataset contains 589 well-
lit images with corresponding real low-light images of resolutions
varying from 3000 × 2000 to 6000 × 4000. Proxy low-light images
generated using NLPR well-lit images are used for training state-
of-the-art saliency detection models CSNet [10] and BASNet [36]
while real low-light images of SICE dataset are reserved for testing.
Due to the absence of GT annotation for real low-light images, we
consider the saliency predictions of BASNet and CSNet trained for
well-lit conditions on SICE’s well-lit images as the ground truth
respectively.

We compare the performance of our method with HiDT [2],
CUT [33], CoMoGAN [35] and FDA [46]. HiDT, CUT and CoMo-
GAN are GAN based deep learning networks for image translation,
while FDA uses classical signal processing for domain adaptation.
The low-light images generated by all these methods from the well-
lit NLPR dataset are then used to re-train BASNet and CSNet. FDA
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FarNear

Real Well-lit Real low-light (a) Tr:Well-lit (b) Tr: FDA (c) Tr: Ours (d) Tr: Well-lit
Te: Real low-light Te: Real low-light Te: Real low-light Te: Real Well-lit

Figure 4: Depth estimation using AdaBins [3] on real low-light images from the SID dataset [6]. (a): AdaBins when trained
on well-lit images degenerates for low-light conditions. (b): Training AdaBins using FDA barely improves the performance.
(c): Training AdaBins on our proxy low-light images significantly improves depth estimation for real low-light images. Our
results are close to ground truth shown in (d).

Table 3: Quantitative comparison for depth estimation on real low-light images [6]. The best result is in bold and second best
is underlined. Our method outperforms FDA.

Trained On 𝛿1↑ 𝛿2↑ 𝛿3↑ REL↓ RMSE↓

Well-lit [29] 0.456 0.71 0.878 0.389 0.725

FDA [46] 0.454 0.794 0.939 0.318 0.644

Ours 0.523 0.833 0.961 0.276 0.569

and our method uses 5 real low-light images from the LIME dataset
for low-light image conversion. CUT has to be re-trained for this
task since it was not designed for well-lit to low-light transfor-
mation. As 5 images are too less for training GAN based models,
additional 3000 images from the Ex-Dark dataset [25] are used
when training GAN based models. We also tried fine-tuning HiDT
and CoMoGAN, but as they are specifically designed for low-light
translation, the performance of pre-trained models is better and we
use them for all comparisons.

We additionally compare with Zero-DCE [13] which is used to
enhance low-light images as a pre-processing step. We could not
compare with works of Xu et al. [45], [27], [44] since neither their
code nor their dataset is publicly available.

We use PyTorch running on a CPU with 32GB RAM and a 12GB
K80 GPU for implementing the proposed method. Unless stated oth-
erwise, lower-frequency (𝜆𝑙 ), upper-frequency (𝜆𝑢 ) and gamma (𝛾 )
are set to 0.01, 0.10 and 3.5, respectively. Other parameters such as
the loss function, optimiser and data augmentations are as men-
tioned in the available codes of above stated methods.

4.2 Qualitative and Quantitative comparisons
In Fig. 3 we visually compare the saliency maps generated by BAS-
Net and CSNet in different situations. We observe that the simple
pre-processing step of enhancing low-light images using Zero-DCE
before feeding them to BASNet [36] and CSNet [10] trained on well-
lit images yields unsatisfactory results. Marginal improvements are
observed if well-lit images are first translated to low-light images
using HiDT [2], CUT [33] and CoMoGAN [35] and then used to
re-train BASNet and CSNet. This is mainly because, adversarial
training is often susceptible to training instabilities and unnatural
artifacts in the generated images. Training using FDA proxy im-
ages yields better predictions compared to other methods, but is
still quite inferior to ground truth. This is because, as discussed in
Sec. 4.6, FDA transformed images have considerable ringing arti-
facts. Predictions using our transformation not only outperform all
existing methods but are almost at par with ground truth. Our supe-
riority is also supported by Table. 1 where we outperform existing
methods on all four metrics, namely, E-Measure [9], S-measure [8],
F-measure [1] and Mean-Absolute-Error (MAE).
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Most SalientLeast Salient

Real Well-lit Real low-light (a) Tr: Real low-light (b) Tr: Ours (c) Tr: Ours+fine-tuned
Te: Real low-light Te: Real low-light on real low-light images

Te: Real low-light

Figure 5: Qualitative comparison of saliency maps generated on real low-light images from the SICE dataset when CSNet is
trained on: (a) real low-light images, (b) our proxy low-light images, (c) fine-tuning (b) on real low-light images.Without using
our synthetic images, it is not possible to get good performance under low-light conditions because of the absence of publicly
available large-scale datasets for low-light saliency detection.

Table 4: Quantitative comparison for CSNet trained on: (a) real low-light images from SICE, (b) our proxy images and (c)
our proxy images followed by fine tuning on real low-light images from SICE. The best result is in bold and second best is
underlined. Training CSNet on real low-light images yields poor results due to the absence of large-scale datasets for low-light
saliency detection. However, using our synthetic images to increase the training size significantly improves performance as
indicated in columns 2 and 3.

Trained On Real low-light images Ours Ours+fine-tuned on real low-light images

S-measure↑ 0.619 0.801 0.821

F-measure↑ 0.823 0.923 0.939

4.3 Time-Complexity
Table. 2 reports the training time required by CUT, HiDT, CoMo-
GAN, FDA and the proposed method for generating proxy low-light
images. This includes the time needed for training GAN based meth-
ods. We see that GAN based methods take at least 48× more time
than FDA and Ours to transform images. Compared to deep learn-
ing networks, which have millions of learnable parameters, the
proposed transformation has only 2 hyper-parameters i.e., 𝜆𝑙 and
𝜆𝑢 . FDA has only one hyper-parameter, 𝛽 , which is comparable
to 𝜆𝑢 in our algorithm. If 𝛾 is also considered, hyper-parameter
count for FDA and ours increase by one. Thus, our method not only
exhibits qualitative and quantitative superiority but is also fast with
a low number of parameters.

4.4 Generalizabilty
Our method is easy to generalize to other computer vision tasks.
We demonstrate this by extending our pipeline for depth estima-
tion under extreme low-light conditions. Specifically, we re-train
a recent depth estimation network AdaBins [3] on our proxy low-
light images generated using well lit images present in the NYU
dataset [29] and then test it on real extreme low-light images from
the SID dataset [6]. The NYU dataset consists of 640 × 480 well-lit
images with ground truth depth annotations and the SID dataset
consists of 4256×2848 real night-time images with their correspond-
ing well-lit images. For this experiment we use only the low-light
images captured with 0.1s exposure. For transforming NYU well-lit

images we used just one real low-light image from the SID dataset
with lower-frequency (𝜆𝑙 ), upper-frequency (𝜆𝑢 ) and gamma (𝛾 ) set
to 0.01, 0.1 and 6 respectively. We have increased the 𝛾 from 3.5
to 6 as SID images are much more dark than SICE dataset. Simi-
lar settings are used for the FDA pipeline. For benchmarking, we
compute GT depth by passing the well-lit SID images through the
original AdaBins trained for well-lit images. The qualitative results
can be found in Fig. 4 and quantitative results in Table. 3 where we
use the same metrics as used in the AdaBins paper.

4.5 Training on real low-light images
There is no publicly available large scale dataset to train networks
for low-light saliency detection. We however show that such net-
works can be first trained on our proxy images and then fine-tuned
on a limited number of real low-light images to improve perfor-
mance. We do this by evaluating the performance of CSNet under
three scenarios: (i) training on a limited number of real low-light
images from the SICE [4] dataset, (ii) training on our proxy image
dataset obtained from the well-lit NLPR saliency dataset which
has large number of images and (iii) by fine-tuning the network
obtained in (ii) using limited number of real low-light images from
(i).

The NLPR dataset consists of well-lit images with corresponding
ground truth saliency maps but lacks low-light images. On the other
hand, the SICE dataset has well-lit and low-light pairs but lacks
ground truth saliency maps. Thus as described in Sec. 4.1, for (i)
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Well-lit image i) 𝜆𝑙 = 0 ii) 𝜆𝑙 = 0 iii) 𝜆𝑙 = 0.01 iv) 𝜆𝑙 = 0.01

𝜆𝑢 = 0.1 𝜆𝑢 = 0.1 𝜆𝑢 = 0.1 𝜆𝑢 = 0.5

𝑤 = 1 𝑤 = Eq. 4 𝑤 = Eq. 4 𝑤 = Eq. 4

(Proposed)

Figure 6: Ablation study showing the effect of 𝜆𝑙 , 𝜆𝑢 and 𝑤 in generating 𝐼prx. 𝛾 was set to 2.5 for all the images. Color and
ringing artifacts can be observed in i). However, our windowing technique suppresses these ringing artifacts as shown in ii).
But, color artifacts are still present in ii) which are indicated by the red arrows. These color artifacts are diminished by using
our proposed band-pass filtering instead of low-pass filtering as shown in iii). Using a large value of 𝜆𝑢 degrades the visual
quality as shown in iv).

we treated the saliency maps generated by passing well-lit SICE
images through CSNet trained for well-lit conditions as the ground
truth. After discarding the images for which the ground truth maps
were not appropriate by manual inspection, we finally obtained
156 real low-light images with ground truth saliency. For (ii) we
translated well-lit NLPR images into proxy low-light images while
retaining original saliency ground truth (see Sec. 4.1 for details).

Table. 4 and Fig. 5 respectively present the quantitative and
qualitative results for the different scenarios. The poor performance
of the network in Fig.5(a) is due to the limited number of real low-
light images available for training. However, using our proxy images
for pre-training and then fine-tuning with these limited number
of real low-light images (in our case 156) boosts the network’s
performance as shown in Fig.5(d).

4.6 Ablation Studies
Fig. 6 shows the ablation studies conducted on our method by
choosing well-lit images from the NLPR dataset and a real low-light
image from the SID [6] dataset. In Fig. 6 i) we do not use weighted
averaging for fusion and instead in Eq. 4 we set𝑤 = 1 which causes
sharp discontinuities at the cut-off frequencies 𝜆𝑢𝐻

2 and 𝜆𝑢𝑊
2 . We

additionally do not retain the DC frequencies of 𝐼well by setting
𝜆𝑙 = 0. Clearly, the transformed images lack contrast and exhibit
severe ringing artifacts. Except for the 𝛾 correction, Fig. 6 i) is same
as FDA. In Fig. 6 ii) we enforce a smooth fusion of well-lit and
low-light images by using𝑤 as defined in Eq. 4. This helps limit the
Gibbs phenomenon leading to removal of ringing artifacts visible
in Fig. 6 i). The colors in Fig. 6 ii), however, continue to be poor.
For example in the second row in Fig. 6 ii), the color of the road as
indicated by the red arrow has reddish-brown patches. In Fig. 6 iii)
we use band-pass filtering instead of low-pass filtering by slightly

increasing 𝜆𝑙 from 0 to 0.01. Clearly band-pass filtering leads to
better color restorations. Finally in Fig. 6 iv) we use a large value
of 𝜆𝑢 which consequently degrades the semantics of 𝐼well in the
generated proxy low-light image. This is expected because a large
value of 𝜆𝑢 implies that even the high frequencies of real low-light
image, which mostly capture the semantics of low-light image, are
fused into the frequency spectrum of well-lit image. We, however,
only wish to incorporate the style of low-light images and not their
semantics into the well-lit images. As Fig. 6 iii) qualitatively yields
better low-light proxy images, we fix 𝜆𝑙 and 𝜆𝑢 to 0.01 and 0.1
respectively.

5 CONCLUSION
Existing saliency detection datasets mostly consist of well-lit im-
ages which make models trained on these datasets unsuitable for
saliency detection under low-light conditions. Alleviating this prob-
lem generally involves using GAN based models which are com-
putationally expensive and difficult to train. We thus proposed
a classical computer vision method to generate proxy low-light
images from well-lit images which can be used to train models
for saliency estimation under real low-light conditions. We used
band-pass filtering in the Fourier domain for translating well-lit
images into proxy low-light images. During filtering, we ensured
a smooth fusion of frequencies which suppressed the ringing ar-
tifacts. Our method has only a few hyper-parameters and is thus
easy to generalize for different computer vision applications such
as depth estimation. Specifically, we showed that models trained on
our proxy low-light images outperformed existing low-light image
translation methods for saliency and depth estimation under real
low-light conditions.
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