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Abstract

A robot operating in unstructured environments must be able
to discriminate between different grasping styles depending
on the prospective manipulation task. Having a system that
allows learning from remote non-expert demonstrations can
very feasibly extend the cognitive skills of a robot for task-
oriented grasping. We propose a novel two-step framework
towards this aim. The first step involves grasp area estima-
tion by segmentation. We receive grasp area demonstrations
for a new task via interactive segmentation, and learn from
these few demonstrations to estimate the required grasp area
on an unseen scene for the given task. The second step is au-
tonomous grasp estimation in the segmented region. To train
the segmentation network for few-shot learning, we built a
grasp area segmentation (GAS) dataset with 10089 images
grouped into 1121 segmentation tasks. We benefit from an
efficient meta learning algorithm for training for few-shot
adaptation. Experimental evaluation showed that our method
successfully detects the correct grasp area on the respective
objects in unseen test scenes and effectively allows remote
teaching of new grasp strategies by non-experts.

Introduction
Robotic grasping of everyday objects in cluttered environ-
ments is a challenging problem. Many methods estimate
grasps without considering the future tasks, but rather output
grasps at an arbitrary part of the object that may not be suit-
able for the prospective manipulation task. To exemplify, for
a pouring task, a household robot should not grasp a filled
cup from the top, but rather from the side or the handle. The
decision about the grasp location requires cognitive reason-
ing about the scene that we humans often do without even
realizing.

There are data-driven task-oriented grasp estimation
methods based on neural networks trained with large-scale
datasets. There are two drawbacks of such approaches. First,

*These authors contributed equally.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

This work has been funded by the Lighthouse Initiative Geri-
atronics by StMWi Bayern (Project X, grant no. 5140951) and Lon-
gLeif GaPa gGmbH (Project Y, grant no. 5140953).

creating large-scale datasets for task-oriented grasping is
challenging due to the need for intensive human annotations.
Second, the knowledge of the neural network cannot be up-
dated easily for new grasping tasks as it often requires a
complete new training with an even larger dataset. On the
other hand, these issues can be avoided if the robot is able
to learn new task-oriented grasp strategies from a few hu-
man demonstrations. Especially, being able to learn from
non-expert guidance can greatly facilitate the deployment of
robots in the unstructured environments like the household.

The human guidance for task-oriented grasping can be
provided in various ways. In this work, we focus on receiv-
ing human guidance remotely. The motivation for this is that
the guiding person may not and does not have to physically
access the robot or the objects for grasp demonstration. An
example real-life use case is the elderly care robots operating
in the household environment. These robots are supposed to
help the seniors with the household tasks and improve their
life quality. In many cases, the elderly person may not be
the person responsible to guide the robot. In case of need
for guidance for a new task, the robot needs to be operated
remotely. If the robot is able to receive non-expert human
guidance, any non-technical person can help the robot re-
motely, which makes the use of these robots more feasible
in real life.

Existing few-shot grasp learning methods often require
expert knowledge for kinesthetic demonstration (Kopicki
et al. 2016), are limited to 3 or 4-DOF grasps (top grasps)
(Van Molle et al. 2018; Yang et al. 2021; Guo et al. 2022),
or they only work in a structured uncluttered environment
with known or simple-shaped objects (Van Molle et al.
2018). Furthermore, the previous work often requires that
the demonstrator is in the same physical place as the robot,
or the demonstrator has to touch the objects to be able to
demonstrate a grasp (Hélénon et al. 2020; Wang et al. 2021;
Saito et al. 2022). These drawbacks and requirements limit
the practical applications of few-shot grasp teaching and do
not allow remote guidance.

Another point to consider is the abilities of the non-
expert persons providing grasp guidance. The previous work
showed that remotely received grasp demonstrations lead
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(a) Grasp area demonstrations via interactive
segmentation. The selected region on the

screwdriver handle is shown in red.

(b) The obtained few-shot adaptation set after
interactive segmentation. The ground truth

masks are shown as green overlays.

(c) Predicted grasp area on a new scene
after few-shot learning

(d) 6-DOF grasp planning on the predicted
grasp area

(e) Grasp
execution

Figure 1: Pipeline of our remote grasp teaching framework. This illustration is for the task of grasping a screwdriver handle.

to a higher success when the guidance demonstration is
simple, has low degrees-of-freedom and is combined with
autonomous grasp planning for the final grasp generation
(Leeper et al. 2012; Kent, Saldanha, and Chernova 2020).
On the other hand, directly executed 6-DOF grasp demon-
strations tend to fail more often.

All of the above mentioned points lead us to our proposed
solution. We approach the remote few-shot grasp teaching
problem with a novel framework considering non-expert
abilities and 6-DOF grasp complexity. The proposed solu-
tion is based on two steps:

The first step is the specification of the allowed grasping
area for a task on the RGB image. Towards this, we receive
segmentation demonstrations from non-experts via an inter-
active segmentation interface. This brings two advantages.
First, it does not require any expert knowledge about the
robotic system or the technical details of the grasping task,
but the non-expert person simply interacts with the RGB
scene based on the life experience. Second, it allows to spec-
ify a feasible grasp area rather than discrete grasp locations.
Having the entire grasp area improves kinematic feasibility

of the task-oriented grasping task.
The segmentation interface receives positive clicks to se-

lect a region of an object and negative clicks to deselect
them. Using a combination of the positive and negative
clicks, a non-expert person can effortlessly segment the re-
quired grasp regions (see Figure 1(a)). Once the required re-
gion is selected, we save the segmentation mask as a sample
for the given grasping task. The masks and their correspond-
ing RGB images are then used as a support set for adapting
our few-shot segmentation network to the given task.

The network is trained using a meta learning approach
(Nichol and Schulman 2018) to allow few-shot adaptation.
For meta-training, we created a grasp area segmentation
(GAS) dataset consisting of 10089 RGB images along with
the ground truth segmentation masks, using a large-scale
grasp dataset (Fang et al. 2020).

After predicting the specific grasp area for the task, the
second step of our solution is 6-DOF grasp pose estima-
tion that is performed using a state-of-the-art grasp estimator
(Sundermeyer et al. 2021) and the registered depth image.
Thereby, we generate 6-DOF grasp poses that are limited



only to the regions suitable for the prospective task.
Experimental evaluations showed that our segmentation

network is able to be trained with a few demonstrations
on different cluttered scenes, and successfully estimates the
task-related grasp area on unseen cluttered scenes. The tasks
used for testing are usual household tasks such as grasping
the handle or grip of a fork, a drill machine, a cup, a ten-
nis racket or a screwdriver. Grasping tests with a robotic
manipulator showed that our framework indeed facilitates
task-oriented grasp learning from few non-expert demon-
strations. With our pipeline, we aim to extend the cognitive
skills of a robot via remote non-expert support.

Our contributions are summarized as follows:
• We incorporate state-of-the-art interactive segmentation

to receive the grasp area demonstrations intuitively from
non-experts.

• We leverage few-shot learning of part-based grasp area
segmentations given for a prospective task, to be able to
operate effectively after getting a few demonstrations.

• For training the network using meta learning, we create a
grasp area segmentation (GAS) dataset with 10089 RGB
images of cluttered scenes, grouped into 1121 grasp-area
based segmentation tasks.

Related Work
Autonomous Grasp Estimation without Learning
from Demonstration
Robotic grasping research has been focusing on autonomous
grasp estimation since decades. Although the literature in
the past focused more on object model-based and ana-
lytically computed grasps, the state-of-the-art methods are
mostly deep learning-based. Recent techniques estimate 6-
DOF grasps on point cloud data (Sundermeyer et al. 2021;
Mousavian, Eppner, and Fox 2019; Fang et al. 2020; Liang
et al. 2019). These methods aim to output different stable
grasps on the raw scene, without considering the respective
task. Unless limited to some region, they occasionally give
invalid estimations like grasps at the sides of a table, or the
visible part of the robotic arm itself in the scene.

There are task-oriented autonomous grasp estimation
methods, ranging from hand-crafted features and object af-
fordances to the model-free deep learning-based techniques.
Semantics based methods focus on estimating object affor-
dances (Do, Nguyen, and Reid 2018) for further grasp plan-
ning. Liu et al. proposed a context-aware grasp estimation
method which receives a large variety of semantic features
and estimates a task-oriented grasp (Liu, Daruna, and Cher-
nova 2020).

The above mentioned methods are based on batch training
of neural networks with thousands or millions of examples.
Hence, they require a large dataset and are not designed for
learning from few demonstrations.

Grasp Learning from Few Demonstrations
Few-shot learning of grasp estimations has attracted the
attention of many robotic researchers as it allows teach-
ing of new grasp strategies easily. Van Molle et al. pro-
posed a CNN-based approach for one-shot grasp learning

(Van Molle et al. 2018). Their method only works for top
grasps on the same workspace, and is tested on simple
block shaped objects. Hélénon et al. proposed a CNN-based
method for few-shot learning of prohibited and authorised
grasping locations in the industrial context (Hélénon et al.
2020). Their method requires a demonstration by a human
who grasps the object with the thumb and index fingers cov-
ered with coloured pads. Wang et al. proposed a method that
estimates the robotic grasp pose by observing a few human
hand-object interactions (Wang et al. 2021). This method re-
quires the shape completion of the known object and human
hand pose estimation. The demonstrator has to interact with
the object to be able to train the robot. Butler et al. proposed
an interactive segmentation scheme for human-in-the-loop
manipulation planning (Butler, Elliot, and Cakmak 2017).
Their method aims to support the planning during opera-
tion but does not include any learning for future operations.
Yang et al. proposed a model that gets a text input describ-
ing the object and outputs a grasp estimation on the respec-
tive object (Yang et al. 2021). It only estimates top grasps
and was mostly tested on simple objects like cuboid, cylin-
der, sphere. The closest work to ours is by Guo et al., which
learns the grasping point of new objects with few examples,
and is based on Model Agnostic Meta Learning (MAML)
(Guo et al. 2022). This method only outputs planar grasps
and allows limited flexibility for robotic grasp planning as
it outputs a single grasp point rather than a grasp area on
the object. Saito et al. proposed grasp learning from obser-
vation, necessitating the demonstrator to interact with the
objects (Saito et al. 2022). Kopicki et al. proposed a method
for one-shot grasp learning on point clouds (Kopicki et al.
2016). This method is based on kinesthetic teaching, which
may not be appropriate for non-experts and it requires the
demonstrator to be in the same physical location with the
robot.

In our framework, we aim to overcome the drawbacks
of the above mentioned methods. Our method is suitable
for non-experts since the demonstrations do not require any
background on the robotic system, but rather they are anno-
tations on a 2D color scene. It allows remote support since
the demonstrator does not need to interact with the robot or
the objects physically. We deploy 6-DOF grasp estimation,
and are thereby able to operate in cluttered environments.
Our network can successfully learn from a few examples to
segment the correct grasping part of everyday objects.

Methodology
Our pipeline is shown in Figure 1 and it starts with getting
the RGB image from the robot’s camera and loading it into
an interactive segmentation interface. A human demonstra-
tor views the scene and segments a specific part of an object
for the given task. An example could be segmenting the han-
dle of a cup for pouring tasks. To process the RGB image
and user annotations during demonstration, we use a custom
web-based interface combined with a click-based interactive
segmentation method (Sofiiuk et al. 2020), which facilitates
quick refinement of the segmentation mask by adding fur-
ther clicks on the object or the background. We get a few
grasp area demonstrations for each task and save the masks



for few-shot adaptation. After the few-shot adaptation, the
network receives an unseen image including the same ob-
ject (potentially at a different pose, partly occluded and in a
different environment), and outputs a segmentation mask on
the relevant region of this object for the task.

For RGB image segmentation, we use the vanilla U-
Net architecture (Ronneberger, Fischer, and Brox 2015) that
we train using an efficient meta learning algorithm (Nichol
and Schulman 2018). We create the GAS dataset for meta-
training, meta-validation and meta-testing as explained in
the next section.

Finally, we apply postprocessing on the output segmenta-
tion mask for outlier elimination.

Grasp Area Segmentation Dataset Creation
In order to train our network, we need a dataset consisting
of RGB images of cluttered scenes, and task-oriented grasp
area segmentation masks on the objects. For each segmenta-
tion task, we want different images with the same object and
the respective segmentation masks showing the same grasp
area on the target object for the given task.

To create the GAS dataset, we benefit from a large
scale grasping dataset named GraspNet-1Billion (Fang et al.
2020). This dataset includes 3D reconstructed cluttered
scenes that are produced using depth frames from different
viewpoints. In addition, it includes the ground truth poses of
all objects and nearly 1 billion non-colliding 6-DOF parallel
gripper poses on the 3D scenes.

We create data for 1121 grasp segmentation tasks, each
with 9 images, yielding 10089 RGB images and segmenta-
tion masks. An example of mask creation is shown in Fig-
ure 2. The data is created using the following procedure:
• For each reconstructed 3D scene in the GraspNet-

1Billion dataset (Fang et al. 2020), we get the source im-
age sequence (256 images obtained by the Kinect Azure
camera) and select images by skipping 20 frames in be-
tween. This gives us sufficiently different RGB images
showing the same 3D scene arrangement.

• For each RGB image of a scene, we get the provided ex-
trinsic camera pose and the camera intrinsic matrix.

• On each 3D scene in the GraspNet-1Billion dataset (Fang
et al. 2020), the gripper poses are given in 6-DOF. We
project the fingertip positions of each grasp onto the 2D
RGB image pixel coordinates. Then, we average the two
fingertip locations and save the center location on the
RGB image as a grasp location. Thereby, we obtain a
grasp location map on all feasible objects on each RGB
image. An example grasp location map can be seen in
Figure 2.b.
As we want grasp regions rather than individual grasp
points, we combine the grasp points into grasp segmen-
tation area masks. This is done as follows:

• We convolve each grasp location map with a 5x5 Gaus-
sian kernel, then erode the resulting image with a 7x7
morphological structuring element and apply 2 dilations
with a 15x15 structuring element. After thresholding the
image, we get a binary mask with the feasible grasp re-
gions on the object.

• We multiply each binary mask with the related ground
truth object segmentation mask (shown in Figure 2.c.) to
separate the grasp areas for each object. This also lim-
its the grasp area inside the object regions only (the area
could have overshot the object boundaries after the dila-
tion step). At this point, we have a feasible grasp region
mask for each object on each RGB image of each scene.

• We eliminate images with too small a grasp area, or
with too diverse grasp locations that result in non-smooth
grasp area masks.

An example RGB image and the obtained grasp area seg-
mentation mask can be seen in Figures 2.a and 2.d.

In the end, we obtain 1121 segmentation tasks, each task
consisting of 9 RGB images and the 9 segmentation masks
showing the grasp area for the corresponding object on the
same scene. Note that we do not label the grasp regions se-
mantically, but rather save the entire feasible grasp region on
each object as a single sample. Since the grasps causing col-
lision were already eliminated in GraspNet-1Billion dataset,
the grasp areas in general correspond to only graspable parts
of the objects rather than the entire object. Hence, our GAS
dataset includes partial segmentations of each object show-
ing feasible grasp regions. In total, we obtain 10089 RGB
images and grasp area segmentation masks as our dataset.

Training with Meta Learning
During training, we prepare the segmentation network for
future few-shot adaptation based on Reptile meta learning
algorithm (Nichol and Schulman 2018). This is an efficient
implementation of the first-order MAML approach. In the
original MAML algorithm (Finn, Abbeel, and Levine 2017),
in each iteration, the network parameters are modified with
few-shot adaptation based on gradient descent and then the
network is trained using gradient descent on the overall loss.
After training with this approach, the neural network has
suitable initialization parameters such that it can be easily
retrained with few examples for a new task, with a small
number of adaptation steps, and generalizes well. However,
this method requires a high computational cost during train-
ing, since the outer loop takes gradients of the inner loop
gradients, leading to second order gradient computations.
On the other hand, the Reptile algorithm has a single loop
which applies multiple steps of the stochastic gradient de-
scent for each task. In each iteration, the parameters of the
network get closer to the optimal initialization for differ-
ent tasks. Nichol et al. (Nichol and Schulman 2018) show
that the Reptile algorithm yields comparable performance to
MAML (Finn, Abbeel, and Levine 2017), at a smaller com-
putational cost. Hence, we train our network with the Reptile
algorithm using various loss functions, and report the perfor-
mance results in the Experimental Evaluation section.

Outlier Elimination
The initial tests indicated that our network successfully seg-
ments the relevant object part for grasping (true positive),
occasionally accompanied by smaller isolated outlier mask
regions in the binary image that are false positives. The



(a) RGB
scene

(b) Grasp location map
for the given RGB scene

(c) Ground truth
object masks

(d) Grasp area segmentation mask
created for one object

Figure 2: An example of grasp area segmentation mask creation using data from GraspNet-1Billion dataset (Fang et al. 2020).

largest region is almost always a true positive region. There-
fore, we eliminate isolated regions having an area less than
50% of the largest mask area. This step changes the segmen-
tation performance marginally as reported in Table 2 with
the outl. elim. (outlier elimination) label.

Figure 5 illustrates the effect of the outlier elimination on
a prediction. The initially predicted mask includes a small
false positive region in addition to the large true positive re-
gion on the tennis racket grip. Outlier elimination eliminates
the false positive region and yields the true positive region.

Experimental Evaluation
We use 1021 tasks in the GAS dataset for training, 50 tasks
for validation and reserve 50 tasks for testing of our network.
The training, validation and test sets include RGB images
from different 3D scenes of the GraspNet-1Billion dataset
(Fang et al. 2020). In all the sets, each segmentation task in-
cludes 9 images. During training and validation, 5 images
are randomly selected and used as few-shot training images
and the remaining 4 are used for evaluating the mask estima-
tion. The 5-shot training images are augmented with random
rotation, random Gaussian blur, random color augmentation
and random flipping during the meta-training. During vali-
dation and testing no augmentation was used on the few-shot
training images.

In addition, we create a custom test set by taking new im-
ages with our RGB-D camera, leading to completely dif-
ferent scenes from the GAS dataset. An example few-shot
adaptation set can be seen in Figure 3. With this custom set,
we aim to test the generalization ability of our network. The

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 3: Example of a few-shot adaptation set with 10 shots
for the task of grasping drill machine handle, from our cus-
tom test set.

custom test set consists of 5 tasks which are common in a
home-setting:

• Cup Handle: Segment the handle
• Drill machine Grip: Segment the grip



(a) Cup Handle (b) Drill Machine Grip (c) Fork Grip (d) Screwdriver Grip (e) Tennis Racket Grip

Figure 4: Grasp-area prediction results using the network trained with the best configuration for various tasks from our custom
test set. The predicted masks are shown as green overlay. Outlier elimination has been used for refining the predictions.

(a) Without outlier elimination (b) With outlier elimination

Figure 5: Outlier elimination removes unwanted predictions
as seen in this example. (a): The outlier prediction in green
is indicated by a red box. The zoomed-in patch is provided in
the top-right corner of the image; (b): The outlier is removed
after applying our outlier elimination method.

• Fork Grip: Segment the grip
• Screwdriver Grip: Segment the grip
• Tennis racket Grip: Segment the grip

All images include cluttered scenes, and the target object
is accompanied by other objects randomly. The camera pose
is not fixed, hence the scenes can show different viewpoints
of the objects. Example scenes of different tasks from our
custom set can be seen in Figure 4.

We use the mean Intersection-over-Union (mIOU) metric
to evaluate the results on ground truth segmentation masks
of the test sets. For each task of the custom test set, we use
10 images for few-shot adaptation and test the performance
on 2 test images. Each task in the GAS test set includes 9
images. Hence, we use 8 images for few-shot adaptation and
1 image for testing.

Implementation details. We use a meta batch size and
an inner loop batch size of 5. For the inner loop, we use
the Adam optimizer, and for the outer loop we use stochas-
tic gradient descent (SGD). We use a fixed learning rate of
3 × 10−4 for the Adam optimizer and a meta learning rate
decreasing from 1 to 0.001 for the SGD. Additionally we use
a weight decay of 10−7 for both optimizers and set β1 = 0,
β2 = 0.999 for the Adam optimizer. The number of adap-
tation steps during training, validation and testing are 5, 12
and 60, respectively.

Analysis and discussions. Training with binary cross
entropy (BCE) loss with and without data augmentation
showed that data augmentation improves the segmentation
performance significantly on the custom test set (newly
taken images), and marginally on the test set of GAS (in-
cluding images from GraspNet-1Billion dataset). The differ-
ence between the performance improvements on the two test
sets is expected, since the GAS’ training set includes unseen
scenes from GraspNet-1Billion, but with a similar scene ar-
rangement to its test set.

It has been shown that, when the segmented area consti-
tutes a small region in the masks, the learning can get stuck
in a local minimum of the BCE loss function and the pre-
dictions can be significantly biased towards the background,
resulting in a poor estimation of the foreground (Milletari,
Navab, and Ahmadi 2016). Milletari et al. proposed to use
Dice’s coefficient that mitigates this problem and improves
the segmentation performance (Milletari, Navab, and Ah-
madi 2016). Following this principle, we train our network
with a sum of Dice and BCE loss and observe that the per-
formance improves significantly on the custom test set.

Finally, the segmentation performance improves slightly
after outlier elimination. The small difference indicates that
our network already predicts a single connected component
in the binary map that is on the correct part of the object.



Table 1: Average segmentation accuracy of the network us-
ing different training strategies.

Method mIoU
8-shot
(GAS set)

mIoU
10-shot
(Custom set)

BCE+No Aug. 0.737 0.368
BCE+Aug. 0.743 0.489
BCE+Dice+Aug. 0.765 0.772
BCE+Dice+Aug.+outl.
elim.

0.762 0.806

Table 2: 10-shot segmentation accuracy on the individual
tasks of the custom test set using the network trained with
the best configuration.

Tasks mIoU mIoU
(with outl. elim.)

Cup handle 0.820 0.820
Drill Machine Grip 0.838 0.838
Fork Grip 0.799 0.844
Screwdriver Grip 0.817 0.884
Tennis Racket Grip 0.585 0.644
Average (all tasks) 0.772 0.806

Table 3: Comparison of segmentation accuracy for 1-shot,
5-shot and 10-shot adaptation on the custom set tasks, using
the network trained with the best configuration.

Tasks mIoU
1-Shot 5-Shot 10-Shot

Cup Handle 0.218 0.557 0.820
Drill Machine Grip 0.275 0.634 0.838
Fork Grip 0.122 0.886 0.844
Screwdriver Grip 0.411 0.866 0.884
Tennis Racket Grip 0.127 0.55 0.644
Average (all tasks) 0.230 0.698 0.806

Table 1 shows the average prediction performance on the
GAS test set and the custom test set, for 8-shot and 10-shot
learning, respectively. We use different training loss func-
tions and analyze the results. The network trained with data
augmentation and using the sum of the BCE and Dice losses
performed the best. The results for the individual tasks of the
custom test set are given in Table 2, for the network trained
with BCE+Dice loss and data augmentation. The qualitative
results for the custom test set are shown in Figure 4.

Overall, we observe very good performance of grasp area
prediction after adaptation using few samples. We also ob-
served that the higher the variety in the few-shot adaptation
set, the higher is the generalization performance of the net-
works. For instance, if the few-shot adaptation set includes
only a single pose of an object, then the segmentation per-
formance is lower on a test image that has the object at a
different pose. A few-shot adaptation set with a lot of vari-
ety is shown in Figure 3.

We further analyze the performance of the network using

different numbers of few-shot samples. Table 3 shows the
outcome for the tasks in the custom test set. Even though
we did not train our network for 1-shot learning, the mIoU
values for 1-shot prediction are positive, showing that the
estimated masks are partially overlapping with the correct
grasp area. We observe that after 5-shot learning, the net-
work already gives a reasonable output, which improves fur-
ther for 10-shot learning. After 10-shot adaptation, the pre-
dicted masks are generally very close to the ground truth
masks.

Finally, we demonstrate our framework on a robotic setup
with a 7-DOF Franka Emika Panda manipulator, as shown
in Figure 1. Here, the task is to grasp the handle of the
screwdriver. We use a state-of-the-art 6-DOF grasp estima-
tor (Sundermeyer et al. 2021) that can output grasps within
a given segmentation area. We use ROS MoveIt! frame-
work (Coleman et al. 2014) for collision-aware motion plan-
ning and execution. We observe a successful task-oriented
operation based on grasp areas that are learned from few
non-expert demonstrations, showing the effectiveness of our
method.

Conclusion
In this paper, we proposed a task-oriented grasp area learn-
ing framework based on remote non-expert demonstrations.
We use interactive segmentation to receive simple demon-
strations from non-experts intuitively. We leveraged a meta
learning strategy to prepare the segmentation network for
few-shot adaptation and segment the task-oriented grasp re-
gions. We combine the grasp area segmentation with a state-
of-the-art grasp planner to plan and execute the 6-DOF grasp
only on the allowed grasp area. For training our network, we
created the GAS dataset with 10089 RGB images and grasp
area segmentation masks, using a large-scale grasp dataset.
Experimental evaluation showed the success of our method
for task-oriented grasp area learning from few remote non-
expert demonstrations. Future work can focus on improving
the network architecture and exploring different meta learn-
ing algorithms for this task.

——————————————————————–

References
Butler, D. J.; Elliot, S.; and Cakmak, M. 2017. Inter-
active scene segmentation for efficient human-in-the-loop
robot manipulation. In 2017 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), 2572–
2579. IEEE.
Coleman, D.; Sucan, I.; Chitta, S.; and Correll, N. 2014. Re-
ducing the barrier to entry of complex robotic software: a
moveit! case study. arXiv preprint arXiv:1404.3785.
Do, T.-T.; Nguyen, A.; and Reid, I. 2018. Affordancenet: An
end-to-end deep learning approach for object affordance de-
tection. In 2018 IEEE international conference on robotics
and automation (ICRA), 5882–5889. IEEE.
Fang, H.-S.; Wang, C.; Gou, M.; and Lu, C. 2020. Graspnet-
1billion: A large-scale benchmark for general object grasp-
ing. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, 11444–11453.



Finn, C.; Abbeel, P.; and Levine, S. 2017. Model-agnostic
meta-learning for fast adaptation of deep networks. In In-
ternational conference on machine learning, 1126–1135.
PMLR.
Guo, W.; Li, W.; Hu, Z.; and Gan, Z. 2022. Few-Shot In-
stance Grasping of Novel Objects in Clutter. IEEE Robotics
and Automation Letters.
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