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Abstract

Deep learning—based models for All-In-One image Restora-
tion (AIOR) have achieved significant advancements in re-
cent years. However, their practical applicability is limited
by poor generalization to samples outside the training dis-
tribution. This limitation arises primarily from insufficient
diversity in degradation variations and scenes within ex-
isting datasets, resulting in inadequate representations of
real-world scenarios. Additionally, capturing large-scale
real-world paired data for degradations such as haze, low-
light, and raindrops is often cumbersome and sometimes
infeasible. In this paper, we leverage the generative capa-
bilities of latent diffusion models to synthesize high-quality
degraded images from their clean counterparts. Specifi-
cally, we introduce GenDeg, a degradation and intensity-
aware conditional diffusion model, capable of producing
diverse degradation patterns on clean images. Using Gen-
Deg, we synthesize over 550k samples across six degrada-
tion types: haze, rain, snow, motion blur, low-light, and
raindrops. These generated samples are integrated with ex-
isting datasets to form the GenDS dataset, comprising over
750k samples. Our experiments reveal that image restora-
tion models trained on GenDS dataset exhibit significant
improvements in out-of-distribution performance as com-
pared to when trained solely on existing datasets. Further-
more, we provide comprehensive analyses on implications
of diffusion model-based synthetic degradations for AIOR.
The code will be made publicly available.

1. Introduction

Image restoration is a well-studied computer vision prob-
lem that aims to reverse the effects of image corruptions or
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Figure 1. Out-of-distribution performance of image restoration
models when trained solely using existing datasets and our pro-
posed GenDS dataset. Significant improvements can be observed
across all degradations. Metric values reduce outward.

artifacts. It is important for numerous applications, includ-
ing autonomous driving, imaging and surveillance. Early
approaches focused on handling specific degradations such
as haze [16, 51], rain [19, 43], snow [11, 52], blur [33, 38]
etc. More recent methods such as Restormer [50], MPR-
Net [49] and SwinIR [26] proposed architectures capable of
addressing any single restoration task. However, these ap-
proaches are limited to addressing one type of degradation
at a time, making them inefficient for scenarios involving
multiple types of corruptions.

All-In-One Restoration (AIOR) methods overcome this
limitation by employing a single model capable of han-
dling multiple types of degradations. Recent approaches
include PromptIR [34], DA-CLIP [31], DiffUIR [55], Diff-
Plugin [28], InstructIR [13] and AutoDIR [18]. Most AIOR
methods are trained using a single dataset for each restora-
tion task such as RESIDE [23] for dehazing, Snow 100k [29]
for desnowing, Rain13K [49] for deraining and GoPro [33]
dataset for motion deblurring. Although these approaches
perform well on degradations from these dataset distribu-
tions, they often exhibit poor generalization when con-
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fronted with new scenes or out-of-distribution (OoD) degra-
dation patterns, which is very common in real-world scenar-
ios. Recent studies have discussed the problem of general-
ization in image restoration models in great depth [17, 22].
We hypothesize that the limited generalization of these
models is mainly due to two reasons:

1. Lack of large datasets with real degradations under
diverse scenes. In this paper, we consider the degrada-
tions haze, snow, rain, raindrop, motion blur and low-
light. Fig. 2 shows the number of synthetic and real
images for each degradation from its existing publicly
available datasets, along with the number of unique
scenes. To the best of our knowledge, we have in-
cluded most of the existing datasets. Firstly, the figure
shows that existing restoration datasets are significantly
smaller than those used to train generalizable models for
other low-level vision tasks, such as SAM [21] for seg-
mentation and Depth-Anything [47] for depth estimation
(> 1.5M samples). This limited dataset size hinders the
ability of models to generalize well to diverse real-world
scenarios. Secondly, the figure illustrates that degrada-
tions such as haze, raindrop, low-light and snow have
very few real images compared to synthetic ones. This
scarcity is because of challenges in capturing real images
under these conditions. For instance, haze is an atmo-
spheric phenomenon which is difficult to simulate in real
scenarios. Conversely, motion blur and rain have a de-
cent number of real-world examples as they can be gen-
erated from existing videos [15, 25, 33, 38, 43]. Thirdly,
degradations such as haze, raindrop and low-light have
very limited scene diversity which can further limit the
generalization of models. Finally, it can be observed that
the number of samples across different degradations is
highly imbalanced.

2. Lack of variety in degradation patterns within
datasets. Previously, we analyzed the distribution of
samples for each degradation. Examining individual
datasets, especially synthetic ones, reveals that they
contain degradations generated using only a particular
model. For instance, the images in the RESIDE [23]
dataset are generated by the atmospheric haze model [7]
with specific parameters. Consequently, training a net-
work on such a dataset can tailor it to work only for the
degradation patterns of that dataset, limiting its general-
ization capability for real-world dehazing.

Due to the above reasons, existing AIOR methods overfit
to specific training distributions, thus, limiting their ability
to generalize to real-world degradations. To overcome this
limitation, we aim to develop robust all-in-one restoration
models capable of generalizing to OoD restoration. We de-
fine OoD samples as those that are from a test set, whose
training set was not utilized for training. Achieving this
requires a large number of degraded images with diverse
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Figure 2. Analysis of real and synthetic image restoration datasets
for various degradations. Existing datasets are small and less di-
verse, especially for haze, low-light, and raindrop. Our diffusion-
generated synthetic data substantially increases the number of
samples as well as scene diversity.

degradations. Since collecting real-world data for all the
degradations is infeasible as already mentioned, we propose
a novel degradation generation network capable of produc-
ing diverse degradation patterns for each degradation.

Latent diffusion models (LDMs) [37] have demonstrated
immense potential in generating diverse high quality im-
ages. We propose to harness the generative capability of
LDMs for synthesizing diverse degradations. Specifically,
we train GenDeg, a diffusion model based on Stable Diffu-
sion that conditions on text prompts, clean images and the
levels of degradation to generate diverse degraded images
under different degradations. We train GenDeg by combin-
ing multiple existing datasets for each degradation type to
ensure that it does not heavily rely on a specific degrada-
tion pattern or physical model. Thus, it can produce both
synthetic and realistic degradations, thereby enriching the
diversity of degradation patterns in the generated data. Fur-
thermore, GenDeg offers fine-grained control over the in-
tensity and spatial variations of generated degradations. We
achieve this by conditioning GenDeg on the mean (y:) and
standard deviation (o) of the degradation map during train-
ing. Using GenDeg, we generate over 550k degraded im-
ages from roughly 120k clean images. We augment exist-
ing restoration datasets with our generated images to cre-
ate a dataset, GenDS, with over 750k paired images under
haze, rain, snow, motion blur, low-light and raindrop degra-
dations. GenDS provides a significant boost in scene diver-
sity and number of samples as seen from Fig. 2. Training
models with our GenDS dataset shows substantial improve-
ments in OoD performance as seen from Fig. 1. In Fig. 3
we illustrate that the diverse degradations in the GenDS
dataset help bridge the domain gap between existing and
OoD datasets (see Sec. 4.2 for more details). Additionally,
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Figure 3. t-SNE visualization ofodegradgution features obtained for
hazy samples from existing training data, GenDS dataset and OoD
test sets. The features were obtained using DA-CLIP [31].

our dataset consists of the same clean images under differ-

ent degradations that, to the best of our knowledge, is the

first such dataset.

Finally, we train three models on the GenDS dataset,
namely NAFNet [10], PromptIR [34] and a Swin
Transformer-based model that we propose. Our experi-
ments demonstrate that these models achieve significant
improvements in their generalization performance when
trained on our large-scale dataset.

In summary, our contributions are as follows:

1. We propose a novel diffusion model-based degradation
generation framework, GenDeg, which is capable of pro-
ducing diverse degradations on any clean image.

2. Using GenDeg, we synthesize over 550k degraded im-
ages which when combined with existing datasets forms
the comprehensive GenDS dataset comprising approxi-
mately 750k samples across highly diverse scenes. Fur-
thermore, each image in GenDS has multiple degraded
versions, making it, to the best of our knowledge, the
first restoration dataset of its kind.

3. Finally, we train restoration models on the GenDS
dataset and demonstrate that incorporating our syn-
thetic data significantly improves the out-of-distribution
restoration capabilities of these networks.

2. Related Works

In this section, we discuss relevant works on all-in-one im-
age restoration and diffusion models for synthetic data. Re-
lated works on diffusion models are given in supplementary.

2.1. All-in-one image restoration

All-in-one restoration (AIOR) methods employ a single
model to address multiple corruptions. Early approaches
include All-in-one [24], which employed neural architec-
ture search to select optimal encoders for weather tasks, and
Transweather [42], which unified multiple encoders for ef-
ficient multi-weather restoration. Airnet and [12] used con-

trastive loss to learn well-separated degradation represen-
tations. PromptIR [34] utilized learnable prompt embed-
dings to handle multiple degradations. Recent approaches
have leveraged the potential of diffusion models for AIOR.
DA-CLIP [31] used degradation information from CLIP to
guide diffusion-based image restoration. Diff-Plugin [28]
leveraged multiple task plugins to guide a latent diffu-
sion model for restoration. DiffUIR [55] proposed selec-
tive hourglass mapping to create task-specific distributions
with high image quality. AutoDIR [18] developed an auto-
matic approach using vision-language models for degrada-
tion detection and restoration. Additionally, InstructIR [13]
utilized text guidance as instructions for AIOR. Despite
these advancements, no existing work (to the best of our
knowledge) has explored using diffusion models to gen-
erate degradations. Our approach enables the creation of
large datasets with realistic degradations to train generaliz-
able image restoration models.

2.2. Diffusion models for synthetic data

Recent research has focused on leveraging the potential of
latent diffusion models for generating synthetic data. [3, 4,
39, 40, 48] demonstrated that diffusion-generated images
improve classification and zero-shot classification perfor-
mance. However, classification tasks do not require preser-
vation of intricate details in the generated images. Some
approaches [32, 45] explored the use of diffusion-generated
data for pixel-level semantic segmentation task and demon-
strated promising directions. Further, [41, 54] showed
that augmenting real data with diffusion-generated sam-
ples enhances aerial segmentation performance. Nonethe-
less, these approaches primarily generate only segmenta-
tion masks which lack detailed scene content. In contrast,
we propose to generate high quality degraded images for
image restoration tasks, for which ensuring precise scene
consistency is crucial, as discrepancies can degrade restora-
tion performance. Our approach effectively addresses these
challenges, leading to significant improvements in the gen-
eralization of image restoration models trained with our
generated data.

3. Proposed Method

In this section, we detail GenDeg, our diffusion-based
method for generating large-scale synthetic data for image
restoration. We also discuss the process of data generation,
curation and training of restoration models.

3.1. Diffusion based degradation generation

Our goal is to leverage the generative priors of pre-trained
diffusion models to produce diverse degradations on clean
images while preserving the underlying scene semantics.
We consider the synthesis of six common degradations,
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Figure 4. (a) Illustrates the training stage of the GenDeg model where it is trained to condition on the clean image, text prompt and mean
intensity (1) and variation (o) of the degradation pattern. (b) Shows the inference stage where the model generates a degraded image based
on these conditions; and (c) Depicts the architecture of the Swin-transformer-based restoration network.

namely, haze, rain, snow, low-light, motion blur and rain-
drops. To achieve this, we require a diffusion model that
conditions on an input clean image (that needs to be de-
graded) and a prompt specifying the desired degradation.
One popular approach that aligns with our objectives is the
InstructPix2pix [5] model. It is a text-based image editing
framework that leverages the latent diffusion model (LDM),
Stable Diffusion [37], to generate edited images that are
consistent with the input image. LDM operates in the latent
space of a pre-trained variational auto-encoder [20] whose
encoder and decoder are denoted by £ and D, respectively.
Given an image xj,, image condition ¢y, and text condi-
tion cext, the diffusion model (ep) minimizes the following
objective during training

L =Ee (1), £(Cimg)» ctexts e~N(0,1), ¢ [lle — Ee(zt,t»5(Cimg),crext)||§] )

Q)]
where z; is the noised version of £(z;,) at timestep ¢ of the
forward diffusion process and ¢ is the added noise.

In our adaptation, xj, represents the degraded image
from existing paired restoration datasets, ciyg is the cor-
responding clean image, and ¢y 1S a text-prompt convey-
ing information about the degradation to be produced. For
training the diffusion model, we combine multiple synthetic
and real paired image restoration datasets (see supplemen-
tary for dataset details). This approach ensures that the dif-
fusion model learns to produce diverse degradation patterns
not specific to any single dataset.

The text condition ¢ includes both high-level scene in-
formation along with the degradation specifics. To generate
these text descriptions, we process the clean images through
the BLIP-2 image captioning model to obtain scene descrip-

tions. We then append degradation-specific phrases such as
”, in hazy conditions.” to these descriptions, forming the fi-
nal text prompt. Incorporating scene descriptions provides
initial guidance to Stable Diffusion during training, helping
it generate an image related to ¢jmg. A few examples of the
text data are shown in Fig. 4.

While this method produces degraded images effec-
tively, we observed that using only the degradation type
in the prompt causes the diffusion model to default to ex-
treme degradation patterns during inference. For instance,
the generated haze is excessively thick, or the rain is unre-
alistically heavy or minimal (see supplementary for exam-
ples). Such degradations could negatively impact the per-
formance of a restoration model trained on this data, as the
patterns differ significantly from typical real-world scenar-
10s. To overcome this limitation, we introduce an additional
conditioning on the level of the degradation, quantified by
the mean intensity (u) and standard deviation (o) of the
degradation map c¢y,p defined as cnap = |Tin—Cimg|. p repre-
sents mean intensity of degradation in the degraded image
while o indicates its spatial distribution across the image.
We fuse the conditioning information in the form of p and
o with the CLIP [36] embedding, ex, of the prompt, Ciext,
as follows. First, we compute the range, [a, b] of i and o for
each degradation type from all their respective datasets. We
divide this range into 128 bins and obtain a one-hot encod-
ing for the bins corresponding to particular p and o values
calculated from cp,p during training. An additional bin is
included for null-prompt conditioning [5], resulting in vec-
tors of length 129.

We then concatenate the one-hot vectors for p and o to



obtain the vector cyas € R?*129. ¢y is then projected to
cha € R2X77 ysing a learnable transformation. ch,i. is then
transposed to R77*2 and concatenated with e, € R77*768
to obtain a vector of size R77*770. We project this vec-
tor back to the CLIP text embedding dimension and obtain
eprompt € R77%7%8 t0 be fed as conditioning to Stable Diffu-
sion. All projection layers are learned during training. This
conditioning mechanism ensures that the diffusion model is
aware of the degradation level to be added to the clean im-
age, resulting in generated images, Zgen, With diverse and
realistic degradation patterns. The effect of varying p and
o is studied in Sec. 4.2. Fig. 4 (a) summarizes the above
steps.

Finally, we need to tackle the challenge of aligning the
generated degraded images (2gen) precisely with the input
clean images (cimg). The VAE encoding and decoding pro-
cess in latent diffusion models causes the loss of fine details
in the image [9, 18]. To mitigate this issue, we draw in-
spiration from AutoDIR [18], which introduced a Structure
Correction Module (SCM) to reverse VAE-induced distor-
tions. In our framework, the SCM, denoted by S, corrects
Tgen as follows:

Ts = Tgen + S([Tgen, Cimg]) 2

The goal of S is to undo the corruptions causes by the
LDM and VAE without affecting the generated degradation.
We train S after the degradation generator has been trained
(with the generator’s parameters kept frozen) using a one-
step reverse diffusion process:

- (Zt—\/l—dt'ﬁ)
Zgen = \/aft

Here &, is the cumulative product of the noise schedule up
to timestep ¢, and z; is the noisy latent at timestep t. We
then obtain Zeen = D(2gen). The loss function for training
S is given by

Ls = a1 -vV1—a; ||z — x5 “)

The term /&1 - /1 — &, weights the performance of
S for each timestep, recognizing that structure correction is

easier near the initial timesteps (¢ ~ 0) and quite challeng-
ing near the final timesteps (¢ ~ T'). This weighting reduces
the influence of these extreme cases during training.

We found that .S works well for degradations that possess
smooth characteristics such as haze, raindrops and motion
blur. However, for degradations such as rain and snow, S
tends to blur out fine details in the generated image such as
rain streaks and snowflakes. Similarly, for low-light condi-
tions, the SCM can produce blurry outputs due to the low
pixel intensities. Thus, for rain, snow and low-light degra-
dations, we omit the usage of S. Instead, we pass the clean
image through the VAE encoder and decoder to obtain a
slightly altered version ¢y that is better aligned with the

3)

generated image than the original clean image (Cimg). Vi-
sual results showcasing the effect of .S can be found in the
supplementary.

3.2. Dataset creation

With GenDeg, we can now synthesize diverse degradations
on any clean image. We generate these degradations us-
ing unique clean images taken from the training datasets of
GenDeg. Since we use a large number of training datasets,
we obtain approximately 120k distinct scenes. For each
clean image, we produce the degradations that were not
present in its original training set, resulting in five degrada-
tions per image. This strategy supplements existing restora-
tion datasets with our synthetic data, thereby enhancing the
potential for generalization capabilities of restoration mod-
els when trained on them.

To generate a particular degradation, we randomly select
a dataset associated with that degradation type. We sample
[tgen from the histogram of y values in the selected dataset,
which is created by the same binning strategy used during
training. Subsequently, we sample oge, from a similar his-
togram of o values obtained from images belonging to the
sampled pigen bin. This process ensures that the value of
Ogen 1s meaningfully correlated with the chosen figen, result-
ing in realistic degradation patterns. To further enhance di-
versity, for every 1 in 20 images, we select a random value
of 0gen (within acceptable limits) for a chosen figen. The
clean image is then degraded using the chosen jige, and
0Ogen Values. After generation, we filter the images based
on the mean value of the generated degradation map to dis-
card poor quality images (see Fig. 4 (b)). The thresholds
for filtering are empirically determined for each degradation
type (see supplementary for details). In total, after filtering,
we create approximately 550k degraded images which are
combined with samples from existing datasets to obtain the
GenDS dataset.

3.3. Training image restoration models

Transformer based architectures have demonstrated enor-
mous potential in learning generalizable image features.
However, the usage of pre-trained transformers for image
restoration has been limited. We hypothesize that trans-
former encoders pre-trained on large datasets such as Im-
ageNet [14] can serve as effective feature encoders for
improving generalization in restoration tasks. Hence, we
choose a pre-trained Swin transformer encoder [46] as a
strong initialization for extracting generalizable features
from degraded images. We specifically choose the Swin
Transformer [30] over the standard Vision Transformer
(ViT) as it provides hierarchical features at multiple reso-
lutions, which is crucial for preserving fine details in re-
stored images. To reconstruct the restored image from the
features extracted by the Swin Transformer, we employ a



Table 1. Quantitative comparisons of NAFNet [10], PromptIR [34], and Swin-transformer models using LPIPS and FID metrics (lower is
better), trained with and without our GenDS dataset. Performance is evaluated on OoD test sets. The table also includes the performance
of existing state-of-the-art (SOTA) approaches. Training with the GenDS dataset significantly enhances OoD performance. (R) indicates

real images and (S) indicates synthetic images.

Method REVIDE O-Haze RainDS LHP RSVD GoPro LOLv1 SICE [6] RainDS
[53] [1] [35] [15] [31 [33] [44] [35]
Degradation Type Haze (R) Haze (R) Rain (S) Rain (R)  Snow (S) Motion Low- Low- Raindrop
Blur (R) light (R) light (R) (R)
DiffUIR 0.268/58.5 0.334/147.2 0.088/31.2 0.187/26.5 0.176/26.1 0.144/25.2 0.148/65.1 0.442/102.9 -
Diff-Plugin 0.281/72.9 0.377/164.7 0.194/45.0 0.178/30.2 0.207/22.5 0.217/32.8 0.195/70.5 0.233/69.2 -
InstructIR 0.313/65.4 0.341/154.5 0.117/29.2 0.139/21.2 - 0.146/21.1 0.132/57.3 0.234/65.2 -
AutoDIR 0.247/57.9 0.315/144.1 0.105/30.6 0.181/27.0 - 0.157/22.2 0.116/43.7 0.249/74.0 0.157/52.4
PromptIR 0.262/62.0 0.333/150.9 0.111/49.3 0.186/29.3 0.128/15.8 0.186/32.9 0.258/111.8 0.391/99.3 0.208/106.8
PromptIR GenDS 0.212/56.0 0.160/89.0 0.096/34.4 0.182/28.1 0.119/13.9 0.191/31.9 0.178/87.9 0.375/90.7 0.182/79.8
Swin 0.242/62.9 0.254/109.9 0.182/38.8 0.189/27.1 0.143/21.7 0.198/31.7 0.241/112.0 0.293/88.3 0.232/82.6
Swin GenDS 0.209/54.3 0.165/74.6 0.116/35.8 0.162/24.1 0.121/14.1 0.170/36.2 0.167/73.1 0.241/72.1 0.197/70.7
NAFNet 0.211/71.3 0.183/99.2 0.107/34.4 0.200/29.3 0.131/14.3 0.155/28.2 0.167/78.8 0.304/83.5 0.178/73.4
NAFNet GenDS 0.151/52.5 0.143/76.7 0.100/31.5 0.180/27.1 0.110/11.3 0.149/28.7 0.147/63.7 0.278/78.5 0.170/60.5

lightweight convolutional decoder. This decoder aggregates
information from different hierarchical levels of the encoder
to produce a high-quality image. The overall architecture is
depicted in Fig. 4 (c). The usage of 3 x 3 convolutions in the
decoder helps to overcome a major limitation of patch bor-
der artifacts [27] that occur when using transformer models
for image restoration. The effect is more exacerbated when
using vision transformers due to its large patch size. In addi-
tion to training the Swin Transformer-based architecture de-
scribed above, we also train two other restoration networks:
NAFNet [10] and PromptIR [34], on the combined dataset.

4. Experiments

In this section, we provide detailed results and analysis of
our method. Implementation details and dataset details can
be found in the supplementary.

4.1. Results

To understand the impact of the GenDS dataset, we initially
trained NAFNet [10], PromptIR [34] and the Swin model
(Sec. 3.3) exclusively on existing restoration datasets, with-
out incorporating any of our synthetic data. We then evalu-
ated their performance on both within-distribution and out-
of-distribution (OoD) test sets. Subsequently, we retrained
the same models using the entire GenDS dataset and evalu-
ated the performance. Additionally, we compared the per-
formance of these models against state-of-the-art (SOTA)
AIOR models, namely, DiffUIR [55], Diff-Plugin [28], In-
structIR [13] and AutoDIR [18].

Quantitative comparisons. Due to space constraints,
we present quantitative comparisons using only the LPIPS
and FID metrics (following [28]). Table | presents these
scores for OoD test sets across all six degradations. We

observe that PromptIR, NAFNet and the Swin model ex-
hibit significant improvements in QoD performance when
trained on the GenDS dataset. Motion blur performance re-
mains nearly the same even after training with the GenDS
dataset. Since, motion blur already contains sufficient real
data with diverse scenes (see Fig. 2), introducing more syn-
thetic data does not necessarily improve performance on
real OoD samples. This observation highlights the impor-
tance of diverse high-quality data for generalizable image
restoration.

Furthermore, the results indicate that the synthetic data
generated by GenDeg aids in bridging the domain gap with
OoD samples. In certain instances, SOTA methods (up-
per portion of Table 1) outperform our models on specific
OoD datasets (e.g., AutoDIR raindrop removal on RainDS).
However, it is important to note that our models serve as
simple baselines compared to the more complex SOTA ar-
chitectures, and that SOTA methods do not consistently
perform well for OoD datasets across degradations. Fur-
thermore, SOTA architectures could further enhance their
OoD performance by training with our GenDS dataset,
as evidenced by the improvements observed in PromptIR,
NAFNet, and the Swin model.

Table 2 presents the mean within distribution perfor-
mance for each degradation. Interestingly, the perfor-
mance remains almost identical even after training with
our GenDS dataset. Moreover, the within-distribution per-
formance shows substantial improvements for haze, low-
light and raindrop degradations. This improvement is likely
due to the GenDS dataset effectively addressing the limited
scene diversity present in existing datasets for these specific
degradations.

Detailed quantitative results (including PSNR and



Table 2. Quantitative comparisons of mean LPIPS and FID scores (lower is better) across within distribution datasets for each degradation.
Comparisons are shown for PromptIR [34], NAFNet [10] and Swin-transformer models trained with and without our GenDS dataset, along

with SOTA models.

Method Haze Rain Snow Motion Blur  Raindrop Low-light

DiftUIR 0.329/141.46  0.175/53.53  0.305/23.67  0.182/42.89 - 0.551/260.26
DiffPlugin 0.351/154.12  0.205/47.10  0.227/26.86  0.218/50.57 - 0.464/180.67
InstructIR 0.355/158.81  0.144/35.03 - 0.148/31.86 - 0.402/157.74
AutoDIR 0.306/136.27  0.139/38.12 - 0.161/33.34  0.195/68.09  0.420/155.14
PromptIR 0.309/141.05  0.097/32.61 0.100/18.34  0.163/35.79  0.189/84.48  0.421/189.87
PromptIR GenDS ~ 0.210/112.54  0.080/27.95 0.091/16.19  0.171/34.93  0.188/74.65 0.354/168.59
NAFNet 0.190/118.22  0.074/21.84  0.067/8.20  0.136/28.72  0.085/39.91  0.349/172.36
NAFNet GenDS 0.171/104.43  0.077/22.13  0.069/8.56 0.136/29.31  0.069/29.92  0.316/148.65
Swin 0.244/121.92  0.092/24.50  0.080/10.80  0.194/40.69  0.097/47.09  0.420/187.65
Swin GenDS 0.182/105.242  0.090/24.48 0.083/11.44  0.189/42.17  0.092/39.63  0.368/166.13

Input PromptIR  PromptIR GD Swin Swin GD NAFNet NAFNet GD GT

Figure 5. Qualitative comparisons of image restoration models trained with and without our GenDS dataset. The suffix GD represents
training with the GenDS dataset. Zoomed-in patches are provided for viewing fine details.

SSIM) are available in the supplementary material, which
we highly recommend readers consult.

Qualitative comparisons. We provide qualitative re-
sults from one OoD test set for each degradation in Fig. 5.
Qualitative comparisons with SOTA methods are in the sup-
plementary. The models trained with our GenDS dataset
consistently achieve the best restoration results. Notably,
the enhanced images often contain richer colors than the
ground truth (see first row), which can cause bad PSNR and
SSIM scores. Thus, LPIPS and FID scores are more reliable
metrics for testing the OoD performance.

These results demonstrate that the synthetic data gen-
erated by GenDeg effectively bridges the domain gap and
enhances the generalization capabilities of the restoration
models.

4.2. Analysis

In this section, we use our generated synthetic data to con-
duct various insightful analyses.

Synthetic Data Scaling. We analyze the impact of
progressively adding synthetic data generated by our Gen-
Deg framework to existing real data on out-of-distribution
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Figure 6. Effect of scaling number of synthetic samples aug-
mented with real data on OoD performance (LPIPS and FID).

(OoD) performance, utilizing the Swin Transformer model.
Fig. 6 illustrates the variation in mean OoD LPIPS and FID
scores with increasing synthetic data. There is substantial
OoD performance improvements with the addition of up to
100k synthetic samples, after which the performance im-
provement is marginal. Due to limited computational re-
sources, we were unable to scale the synthetic dataset be-
yond 500 ksamples.

Generated degradation diversity. Our results demon-
strate that the degradations generated by GenDeg signif-
icantly aid in improving OoD performance of restoration
models. This improvement is primarily due to the en-
hanced scene diversity (as shown in Fig. 2) in our dataset
and the variety of degradation patterns produced by Gen-
Deg. To illustrate the variety in degradation patterns, we
utilize degradation-aware CLIP (DA-CLIP [31]), a robust
CLIP model trained to extract degradation-specific features
from images. Fig. 3 presents a t-SNE visualization of the
DA-CLIP embeddings obtained from hazy samples in exist-
ing training datasets, our GenDS dataset, and the OoD test
sets. The visualization reveals a substantial gap in degra-
dation features between the training dataset and OoD test-
sets. This indicates that the degradations patterns in these
datasets are different, thereby, posing generalization chal-
lenges. However, our GenDS dataset bridges this gap by in-
troducing numerous samples that resemble those in the OoD
test sets, thereby enhancing generalization. Note that Gen-
Deg was never trained on the OoD test sets. Furthermore,
the t-SNE plot showcases the diversity of degradation pat-
terns produced by our model, as evidenced by our samples
spanning a wide area.

Domain gap with real data. We examine the domain
gap between existing datasets and synthetic samples gen-
erated by GenDeg by training the Swin model exclusively
on GenDeg synthesized data. For this experiment, we
provide mean of the within distribution and OoD perfor-
mance across all degradations. Table 3 provides the mean
LPIPS and FID scores for both within distribution and OoD
performance across all degradations. The results indicate
that training solely with GenDeg data significantly reduces
within distribution performance compared to using existing

Table 3. LPIPS/FID scores for analyzing the performance differ-
ence between training on solely existing data, solely GenDeg data,
and both real and GenDeg data (GenDS data).

Setting ‘Existing data‘GenDeg data‘ GenDS data
Within distribution| 0.1879/72.10 | 0.2358/81.08 [0.1669/64.84
OoD 0.211/59.36 | 0.207/61.71 |0.1694/47.99

Figure 7. Effect of varying p and o in our GenDeg framework for
the degradation of haze.

datasets for training. This decline is expected due to the
domain gap caused by factors such as alignment discrepan-
cies between diffusion-generated samples and correspond-
ing clean samples. However, utilizing both existing and
GenDeg synthesized data, i.e., GenDS dataset, enhances
performance as the restoration model benefits from expo-
sure to diverse degradation patterns and scenes while main-
taining performance on existing data.

For OoD performance, the model trained on existing
datasets alone, experiences a notable decrease from its
within distribution performance. In contrast, models trained
exclusively on GenDeg data show improved OoD perfor-
mance demonstrating that the diversity in scenes and degra-
dation patterns enhances generalization. Nevertheless, the
best performance is achieved when incorporating both ex-
isting and GenDeg data, i.e., GenDS dataset.

Effect of 1« and 0. GenDeg allows us to control the in-
tensity and variations in the generated degradation patterns,
thereby enhancing degradation diversity. We demonstrate
the effect of varying p and ¢ on two images for the syn-
thesized degradation of haze. Fig. 7 illustrates the same
by first fixing the value of ¢ and varying p and then fix-
ing the value of 1 and varying . When p is increased, the
intensity of haze in the image expectedly increases. o con-
trols the variation of haze in the image. For o = 0.15, the
non-homogenous haze (similar to NH-Haze [2]) is spread
throughout the image. As o increases, the spread of haze
becomes more localized with higher intensity as seen from
the figure.



5. Conclusions

In this paper, we addressed the important problem of gen-
eralization in All-In-One Restoration (AIOR) models. To-
ward this aim, we introduced GenDeg, a novel diffusion
model-based framework for synthesizing diverse degrada-
tion patterns on clean images, offering fine-grained con-
trol over degradation characteristics. Utilizing GenDeg,
we generated over 550k degraded samples encompassing
a wide range of scenes and degradations. Training AIOR
models with both existing and GenDeg data yielded signifi-
cant improvements in out-of-distribution performance. Our
work suggests a promising research direction for addressing
generalization challenges in AIOR, aiding in the develop-
ment of more robust restoration models.
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